Fabrication of bio-based composite fillers based on the combination of crystallization and gelation

Author:

Nie Jingyi12,Liu Xinming1,Liang Jiantao1,Zhang Meiyun1,Han Wenjia2

Affiliation:

1. Shaanxi Provincial Key Laboratory of Papermaking Technology and Specialty Paper Development, Key Laboratory of Paper based Functional Materials of China National Light Industry , College of Bioresources Chemical and Materials Engineering , 74618 Shaanxi University of Science & Technology , Xi’an , , China

2. State Key Laboratory of Biobased Material and Green Papermaking , 12689 Qilu University of Technology , Shandong Academy of Sciences , Jinan , , China

Abstract

Abstract Fillers are the second major component of paper, and can give certain properties to paper-based materials. However, if we want to use fillers to develop novel functional paper-based materials, some challenges have to be considered such as filler functionality, retention rate, and the negative effects. To meet with these challenges, the present work proposed a fabrication concept of bio-based composite fillers. The concept combined the crystallization of target component and the gelation process of chitosan (CS), simultaneously. The gels carried and protected the crystals, and served as bridge between crystal of fillers and the paper matrix. To explore and demonstrate the concept, CaCO3/CS bio-based composites were successfully fabricated. The composite fillers were further optimized to be suitable for paper-making. The fabrication concept could significantly increase the filler retention rate (up to 90.57 %), the filler bondability (increased over 10 times) and the mechanical strength (59.7 % higher than paper without fillers). The fabrication concept was also applicable to functional materials. Zeolitic imidazolate framework-8 (ZIF-8)/CS composite fillers were successfully fabricated, and endowed the resulted paper with high surface area (180 times higher than pure cellulose paper). This fabrication concept would be useful to develop functional paper-based materials in the future.

Funder

State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology

Shandong Academy of Sciences

Key Science and Technology Program of Shaanxi Province

Guangxi Key Laboratory of Clean Pulp and Papermaking and Pollution Control

Publisher

Walter de Gruyter GmbH

Subject

General Materials Science,Forestry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3