Fold cracking of coated papers: investigation on automated computer-aided visual assessment method

Author:

Pál Magdolna1ORCID,Dedijer Sandra1ORCID,László Koltai2,Gregor-Svetec Diana3,Cigula Tomislav4ORCID,Pavlović Živko1,Milić-Keresteš Neda1

Affiliation:

1. 229819 University of Novi Sad , Faculty of Technical Sciences, Department of Graphic Engineering and Design , Novi Sad , Serbia

2. Óbuda University , Rejtő Sándor Faculty of Light Industry and Environmental Protection Engineering , Budapest , Hungary

3. 112798 University of Ljubljana , Faculty of Natural Sciences and Engineering, Department of Textiles, Graphic Arts and Design , Ljubljana , Slovenia

4. University of Zagreb , Faculty of Graphic Arts , Zagreb , Croatia

Abstract

Abstract In this paper, white pixel percentage (WPP) value, as an overall measure of fold crack damages, has been analysed with respect to selected parameters of sample preparation and digitalization process, as well as the results of residual tensile strength. The WPP values were derived by an automated image processing algorithm, developed earlier, based on extensive comparative analysis of the existing computer-aided methods. Results indicate that WPP values correlate well with the extent of fold cracks on the coated samples, as far as the used parameters of sample preparation and digitalization are concerned. In the case of correlation with residual tensile strength, results for samples folded in cross direction revealed that the extent of the visually registered fold cracks agree well with the actual damage, while for samples folded in machine direction, the overall strength losses weren’t alarming, although the fold cracks were detected correctly. In addition, results pointed out that the simplest sample placement position (inner angle of 180°) is not applicable for realistic sample representation. Furthermore, scanners could provide a superior image quality in lab conditions, but for industry application, a camera-based solution would be more purposeful, while micrographs are more suitable for traditional visual analysis.

Publisher

Walter de Gruyter GmbH

Subject

General Materials Science,Forestry

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3