Realization of optimization design of electromechanical integration PLC program system based on 3D model

Author:

Zhang Lili1,Zhang Chuanbao1,Wang Peng1,Shabaz Mohammad2,M. G. Skanda3,C. Vijayalakshmi4,Kishore Kakarla Hari5

Affiliation:

1. Tangshan Polytechnic College , Tangshan Hebei, 063299 , China

2. Model Institute of Engineering and Technology , Jammu , J&K , India

3. Department of Industrial and Production Engineering, SJCE, JSS Science and Technology University , Mysore , India

4. Panimalar Engineering College , Chennai , Tamil Nadu , India

5. Department of Electronics and Communication Engineering, Koneru Lakshmaiah Education Foundation , Vaddeswaram, Guntur , Andhra Pradesh , India

Abstract

Abstract A three-dimensional simulation model of the electromechanical control system was built using the fuzzy control proportional–integral–derivative (PID) adjustment algorithm after an automatic electromechanical control system based on programmable logic controller (PLC) technology was optimized to achieve the practical use of electromechanical program control. First, the hardware of the electromechanical control system is discussed and designed. The findings demonstrate the viability of the mechanical and electrical integration PLC program optimization solution based on three-dimensional (3D) model. The system has a higher control and management efficiency, which is 30% greater than that of the conventional system. The mechatronic manufacturing system’s continuous operation efficiency enhancement can significantly lower the investment costs and boost the financial gains of industrial organizations. Traditional systems have a control and management efficiency of around 30%, but automatic electromechanical control systems based on PLC technology and created using 3D models have a control and management efficiency between 60 and 70%.

Publisher

Walter de Gruyter GmbH

Subject

Computer Networks and Communications,General Engineering,Modeling and Simulation,General Chemical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3