Gyrotactic microorganism and bio-convection during flow of Prandtl-Eyring nanomaterial

Author:

Hayat Tasawar12,Ullah Inayat1,Muhammad Khursheed3,Alsaedi Ahmed2

Affiliation:

1. Department of Mathematics , Quaid-I-Azam University , Islamabad 44000 , Pakistan

2. Nonlinear Analysis and Applied Mathematics (NAAM) Research Group, Faculty of Science , King Abdulaziz University , Jeddah 21589 , Saudi Arabia

3. Department of Mathematics , Quaid-I-Azam University 45320 , Islamabad , Pakistan , E-mail: , Tel: +92 51 90642172

Abstract

Abstract Our main intension behind this work is to investigate Prandtl-Eyring nanomaterial in presence of gyrotactic microorganisms. Flow is generated via stretching sheet and is subject to melting heat effect. Radiation and dissipation are addressed. Entropy rate is also reported. Nanofluid effects are explored through Buongiorno model for nanofluid by considering Brownian motion and thermophoresis impacts. Problem related modelling is done by obtaining PDEs and these PDEs are then transmitted into ODEs by using appropriate similarity variables. Homotopic technique has been employed to obtain a convergent series solution of the considered problem. Graphical results have been presented to investigate the impact of different prominent variables over fluid velocity, temperature distribution, nanofluid concentration and on microorganism concentration. Entropy analysis has been discussed and the physical quantities such as surface drag force, Nusselt number, local Sherwood number and microorganism density number for the current problem is obtained. Velocity boost against higher melting and fluid parameters. Temperature of the fluid reduces with an increment in melting and radiation parameters while it intensifies through Prandtl and Eckert number, Brownian motion and thermophoresis parameters. Decay in concentration is noticed against higher values of melting and thermophoresis parameters while it increases for higher Schmidt number and Brownian motion parameter. Microorganism field boosts with higher values of Peclet number and microorganism concentration difference parameter. Moreover entropy generation rate intensifies against higher radiation parameter and Brickman number.

Publisher

Walter de Gruyter GmbH

Subject

Computer Networks and Communications,General Engineering,Modeling and Simulation,General Chemical Engineering

Cited by 35 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3