Experimental and simulation research on the difference in motion technology levels based on nonlinear characteristics

Author:

Liang Guiping1,Fu Haiming1,Ganapathy Sekar2,Bhola Jyoti3,Doddawad Vidya G.4,Athawale Shashikant V.5,Bhatia Komal Kumar6

Affiliation:

1. Guangzhou Huaxia Vocational College , Guangzhou , Guangdong, 510935 , China

2. Department of Electronics and Communication Engineering, Sri Ramakrishna Institute of Technology , Coimbatore , Tamil Nadu , India

3. Department of Electronics & Communication Engineering, Model Institute of Engineering and Technology , Jammu, J&K , India

4. JSS Dental College and Hospital, JSSAHER , Mysore , India

5. Department of Computer Engineering, AISSMS COE, Savitribai Phule Pune University , Pune , India

6. Department of Computer Engineering, Faculty of Informatics & Computing, J.C. Bose University of Science & Technology, Ertwhile YMCA University of Science & Technology , Faridabad , 121004, Haryana , India

Abstract

Abstract Wearable and movable lodged health monitoring gadgets, micro-sensors, human system locating gadgets, and other gadgets started to appear as low-power communication mechanisms and microelectronics mechanisms grew in popularity. More people are interested in energy capture technology, which turns the energy created by motion technology into electric energy. To understand the difference in motor skill levels, a nonlinear feature-oriented method was proposed. A bi-stable magnetic-coupled piezoelectric cantilever was designed to detect the horizontal difference of motion technology. The horizontal difference was increased by the acceleration generated by the oscillation of the leg and the impression betwixt the leg and the ground during the movement. Based on the Hamiltonian principle and motion technique signal, a nonlinear dynamic model for energy capture in motion technique is established. According to the shaking features of human leg motion, a moveable nonlinear shaking energy-gaining system was the layout, which realized the dynamic characteristics of straight, nonlinear, mono-stable, and bi-stable. The experimental outcome shows that nonlinearity can effectively detect the difference of motion techniques. The experimental results of different human movement states confirm the benefits of the uncertain bi-stable human power capture mechanism and the effectiveness of the electromechanical combining design established. The nonlinear mono-stable beam moves in the same way as the straight mono-stable beam in the assessment, but owing to its higher stiffness, its frequency concentration range (13.85 Hz) is moved to the right compared to the linear mono-stable beam, and the displacement of the cantilever beam is reduced. If the velocity is 8 km/h, the mean energy of the bi-stable method extends to the utmost value of 23.2 μW. It is proved that the nonlinear method can understand the difference in the level of motion technique effectively.

Publisher

Walter de Gruyter GmbH

Subject

Computer Networks and Communications,General Engineering,Modeling and Simulation,General Chemical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3