Research on facial expression recognition based on an improved fusion algorithm

Author:

Yaermaimaiti Yilihamu1,Kari Tusongjiang1,Zhuang Guohang1

Affiliation:

1. School of Electrical Engineering, Xinjiang University , Urumqi , Xinjiang 830047 , China

Abstract

Abstract This article puts forward a facial expression recognition (FER) algorithm based on multi-feature fusion and convolutional neural network (CNN) to solve the problem that FER is susceptible to interference factors such as non-uniform illumination, thereby reducing the recognition rate of facial expressions. It starts by extracting the multi-layer representation information (asymmetric region local binary pattern [AR-LBP]) of facial expression images and cascading them to minimize the loss of facial expression texture information. In addition, an improved algorithm called divided local directional pattern (DLDP) is used to extract the original facial expression image features, which not only retains the original texture information but also reduces the time consumption. With a weighted fusion of the features extracted from the above two facial expressions, new AR-LBP-DLDP facial local features are then obtained. Later, CNN is used to extract global features of facial expressions, and the local features of AR-LBP-DLDP obtained by weighted fusion are cascaded and fused with the global features extracted by the CNN, thereby producing the final facial expression features. Ultimately, the final facial expression features are input into Softmax for training and classification. The results show that the proposed algorithm, with good robustness and real-time performance, effectively improves the recognition rate of facial expressions.

Publisher

Walter de Gruyter GmbH

Subject

Computer Networks and Communications,General Engineering,Modeling and Simulation,General Chemical Engineering

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3