Study on modal parameter identification of engineering structures based on nonlinear characteristics

Author:

Guo Wei1,Rubaiee Saeed2,Ahmed Anas2,Othman Asem Majed2,Khosla Atul3

Affiliation:

1. College of Civil Engineering and Water Conservancy, Heilongjiang Bayi Agriculture University , Daqing Heilongjiang , 163319 , China

2. Department of Industrial and Systems Engineering, University of Jeddah , P.O. Box: 80327 , Jeddah 21589 , Saudi Arabia

3. Department of Mechanical Engineering, Lovely Professional University , Phagwara 144411 , Punjab , India

Abstract

Abstract To study the nonlinear characteristics of the modal recognition of civil engineering parameters, a method of nonlinear recognition of the parameters of characteristics based on LMD is proposed. The LMD method is applied to decompose the acceleration response signals of the disturbing structure of the building, to obtain the PF components, the instantaneous frequency, and the instantaneous amplitude of each PF component, to determine the modal natural frequency and damping coefficient. To determine the modal parameter based on the LMD, the calculation and analysis results are presented as follows: the frequency of the components fluctuates between the fifth and sixth models, which shows that the components contain the reaction of the fifth and sixth design modes. This is because these two modes (3.101 Hz and 3.147 Hz) are very close to each other, which makes it difficult to distinguish between the responses of these two modes by the LMD method. The frequency of the components is always stable (the first 2.5 s), which indicates that during this period the responses of modes 5e and 6e do not dampen, and the ratio between them in the PF1 components does not differ much. The component frequency curve shows an interesting phenomenon. Starting from about 3.8 s, the frequency curve gradually approaches the first mode, and only the frequency of the first mode is about 6 s, which indicates that the response of the first mode still exists and makes up a significant proportion. Modular response, caused by the damping, is only detected in the first half of the 10 s response, after which it is verified from the nonlinear characteristics of the LMD parameter recognition method that half of the third-order modal response on the scale is very low and almost equal to zero, and despite problems with dense frequency separation mode in the LMD method, the frequency responses of its PF components may reflect the mode combination phenomenon and reflect the duration of each mode throughout the response.

Publisher

Walter de Gruyter GmbH

Subject

Computer Networks and Communications,General Engineering,Modeling and Simulation,General Chemical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3