Convective conditions and dissipation on Tangent Hyperbolic fluid over a chemically heating exponentially porous sheet

Author:

Patil Mamata,Mahesha ,Raju C.S.K.

Abstract

Abstract In this present analysis we investigated the steady-state magnetohydrodynamic boundary layer flow of tangent hyperbolic fluid over an exponentially stretching surface in the presence of heat source and chemical reaction. The chemical reaction with combination of exponential surface has significance in many industrial and manufacturing systems. The partial nonlinear differential equations are transformed into ordinary differential equations by using the similarity conversion and the accomplished boundary layer ordinary differential equations are elucidated numerically by using Shooting technique. The effects of numerous non-dimensional governing factors on velocity, temperature and concentration profiles were depicted graphically and analyzed in detail. The numerically computed results of Skin friction factor, Nusselt and Sherwood numbers are presented in tabular form for suction and injection cases separately.Heat transfer rate at the surface increases with increasing values of power law of index and whereas it declines with the magnetic field, heat source and chemical reaction parameters. It observed that Biot number enhances the skin friction, Nusselt number and decrease the Sherwood number.Heat transfer rate and mass transfer rate increases and skin friction decreases with increasing Eckert number.

Publisher

Walter de Gruyter GmbH

Subject

Computer Networks and Communications,General Engineering,Modelling and Simulation,General Chemical Engineering

Reference34 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3