A compact and powerful EMAT design for contactless detection of inhomogeneities inside the liquid volume of metallic tanks

Author:

Rieger Kai1,Erni Daniel2,Rueter Dirk1

Affiliation:

1. Institute of Measurement Engineering and Sensor Technology , 191668 University of Applied Sciences Ruhr West , Duisburger Str. 100 , Mulheim an der Ruhr , Germany

2. General and Theoretical Electrical Engineering (ATE), Faculty of Engineering , 120335 University of Duisburg-Essen , and CENIDE – Center for Nanointegration Duisburg-Essen , Duisburg , Germany

Abstract

Abstract A simple and powerful design of an electromagnetic acoustic transducer (EMAT) without bulky permanent magnets is presented. The EMAT is operated in a pulse echo modality and generates longitudinal ultrasound at about 1 MHz. Unlike shear waves, these longitudinal ultrasound pulses can propagate in liquids. The generally addressed application scenario is the examination of a liquid volume inside a metallic container or tank, e. g., the detection of inhomogeneities within the liquid. The herein proposed EMAT operates for virtually all metallic containers, i. e., it succeeds for container walls made of aluminum or ferromagnetic steel, and even for non-ferromagnetic (stainless) steel. Moreover, unlike piezo transducers, EMAT techniques allow for a non-contacting ultrasound transduction: the air gap between the EMAT sensor coil and the tank’s metallic surface extends up to 2 mm. Even with this relatively large air gap, the biasing magnetic field approaches a flux density of 3.2 T at the surface, more than what is possible to achieve with the permanent magnets of conventional and bulkier EMATs. Strong fields improve the coupling efficiency of the principally low-efficiency EMAT mechanism, which is important for both ultrasound transmission and reception. For that superior field intensity, a unipolar current pulse of up to 3.6 kA is applied through the thin windings (0.5 mm) of the EMAT coil. This paper presents a novel solid-state EMAT circuitry for such strong currents and MHz pulsed voltages >1 kV. As a particularly delicate task, the powerful circuitry must also detect the rather weak echo signals in the μV range. A very short recovery time is required after such a strong emission burst. The discussed circuitry consists of three unipolar high-current modules, which can each be independently launched. This allows for received echo signals that can be timed independently, e. g., objects deep inside the liquid tank can be specifically addressed. In general, this work concentrates on the novel circuitry in parallel connection, the general pulse-echo functionality and the magnetic fields. A detailed analysis and shaping of the ultrasonic fields through different EMAT coil geometries would exceed the scope of this contribution and is to be reported separately.

Funder

Deutsche Forschungsgemeinschaft

Publisher

Walter de Gruyter GmbH

Subject

Electrical and Electronic Engineering,Instrumentation

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3