Measurement uncertainty of non-incremental, non-contact, in-situ shape measurements

Author:

Schuster Micha Sebastian1,Kuschmierz Robert1,Czarske Jürgen1

Affiliation:

1. Technische Universität Dresden, Fakultät Elektrotechnik und Informationstechnik; Institut für Grundlagen der Elektrotechnik und Elektronik, Professur für Mess- und Sensorsystemtechnik, Dresden Germany

Abstract

Abstract Optical measurement systems work fast and non-contact and can achieve sub-micron precision. Thus they appear to be well suited for in-situ shape measurement of fast rotating objects such as cutting processes in metal working lathes. Most optical measurement systems, however, allow an axial position measurement only. In order to retrieve the shape of the object from a distance measurement, the distance between the sensor and the centre of the object has to be known. Otherwise, deviations of this distance, for instance due to temperature effects or vibrations, will result in a measurement deviation. In order to allow an absolute shape measurement, which is independent of the sensor position, the mean radius of the rotating object can be retrieved from the object's circumferential velocity. The laser Doppler distance sensor with phase evaluation (P-LDD sensor) allows a simultaneous velocity and distance measurement with high temporal resolution. Thus, the P-LDD sensor allows to measure the mean radius as well as the spatially resolved deviation of the radius independently of the sensor position. In order to quantify the achievable measurement uncertainty, and especially the influence of the temperature the measurement uncertainty budget is derived and considers random as well as systematic errors. It is shown that the P-LDD sensor allows an absolute, three-dimensional shape measurement of fast rotating objects with sub-micron uncertainty. The systematic measurement uncertainty of the absolute shape due to the temperature amounts to only 200 nm/K. Thus the P-LDD sensor is not dependent on temperature-controlled laboratories but can be employed directly in the production process (in-situ or in-process).

Publisher

Walter de Gruyter GmbH

Subject

Electrical and Electronic Engineering,Instrumentation

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3