Deep-learned faces of pain and emotions: Elucidating the differences of facial expressions with the help of explainable AI methods

Author:

Weitz Katharina12,Hassan Teena1,Schmid Ute2,Garbas Jens-Uwe1

Affiliation:

1. 28450 Fraunhofer IIS , Intelligent Systems Group , Am Wolfsmantel 33 , Erlangen , Germany

2. 14310 University of Bamberg , Cognitive Systems Group , An der Weberei 5 , Bamberg , Germany

Abstract

Abstract Deep neural networks are successfully used for object and face recognition in images and videos. In order to be able to apply such networks in practice, for example in hospitals as a pain recognition tool, the current procedures are only suitable to a limited extent. The advantage of deep neural methods is that they can learn complex non-linear relationships between raw data and target classes without limiting themselves to a set of hand-crafted features provided by humans. However, the disadvantage is that due to the complexity of these networks, it is not possible to interpret the knowledge that is stored inside the network. It is a black-box learning procedure. Explainable Artificial Intelligence (AI) approaches mitigate this problem by extracting explanations for decisions and representing them in a human-interpretable form. The aim of this paper is to investigate the explainable AI methods Layer-wise Relevance Propagation (LRP) and Local Interpretable Model-agnostic Explanations (LIME). These approaches are applied to explain how a deep neural network distinguishes facial expressions of pain from facial expressions of emotions such as happiness and disgust.

Publisher

Walter de Gruyter GmbH

Subject

Electrical and Electronic Engineering,Instrumentation

Reference27 articles.

1. Maximilian Alber, Sebastian Lapuschkin, Philipp Seegerer, Miriam Hägele, Kristof T Schütt, Grégoire Montavon, Wojciech Samek, Klaus-Robert Müller, Sven Dähne, and Pieter-Jan Kindermans. innvestigate neural networks! arXiv preprint arXiv:1808.04260, 2018.

2. Nalini Ambady and Robert Rosenthal. Thin slices of expressive behavior as predictors of interpersonal consequences: A meta-analysis. Psychological Bulletin, 111(2):256–274, 1992.10.1037/0033-2909.111.2.256

3. Hillel Aviezer, Yaacov Trope, and Alexander Todorov. Body cues, not facial expressions, discriminate between intense positive and negative emotions. Science, 338(6111):1225–1229, 2012.10.1126/science.1224313

4. Sebastian Bach, Alexander Binder, Grégoire Montavon, Frederick Klauschen, Klaus-Robert Müller, and Wojciech Samek. On pixel-wise explanations for non-linear classifier decisions by layer-wise relevance propagation. PloS one, 10(7):e0130140, 2015.10.1371/journal.pone.0130140

5. Sebastian Bach, Alexander Binder, Klaus-Robert Müller, and Wojciech Samek. Controlling explanatory heatmap resolution and semantics via decomposition depth. In Proceedings of the International Conference on Image Processing, pages 2271–2275. IEEE, 2016.

Cited by 46 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3