Micromagnetic materials characterization using machine learning

Author:

Szielasko Klaus1ORCID,Wolter Bernd1,Tschuncky Ralf1,Youssef Sargon1

Affiliation:

1. 28464 Fraunhofer-Institut für Zerstörungsfreie Prüfverfahren , Saarbrücken , Germany

Abstract

Abstract Micromagnetic materials characterization is a nondestructive means of predicting mechanical properties and stress of steel and iron products. The method is based on the circumstance that both mechanical and magnetic behaviour relate to microstructure over similar interaction mechanisms, which leads to characteristic correlations between mechanical and magnetic properties of ferromagnetic materials. The prediction of mechanical properties or stress from micromagnetic parameters represents an inverse problem commonly addressed by regression and classification approaches. Challenges for the industrial application of micromagnetic methods lie in the development of robust sensors, definition of significant features, and implementation of powerful machine learning algorithms for a reliable quantitative target value prediction by processing of the micromagnetic features. This contribution briefly explains the background of micromagnetics, describes the typical challenges experienced in practice and provides insight into latest progress in the application of machine learning to micromagnetic data.

Publisher

Walter de Gruyter GmbH

Subject

Electrical and Electronic Engineering,Instrumentation

Reference13 articles.

1. Altpeter, I., Becker, R., Dobmann, G., Kern, R., Theiner, W., & Yashan, A. (2001). Robust solutions of inverse problems in eletromagnetic non-destructive evaluation. Inverse Problems, 18(6), 1907–1921.

2. Borsutzki, M. (1997). Prozeßorientierte Ermittlung der Streckgrenze und der Tiefziehkenngrößen rm und Delta r an Kaltgewalztem, Feuerverzinktem Feinblech (Ph. D. thesis). Saarbrücken: Saarland University.

3. Cullity, B. D. (1972). Introduction to magnetic materials. Reading (MA): Addision Wesley.

4. EUROFER. (2019). European Steel in Figures. Abgerufen am 6 2019 von EUROFER: https://aceroplatea.es/docs/EUROFERSteelFigures2018.pdf.

5. Hering, E., Martin, R., & Stohrer, M. (2002). Physik für Ingenieure. Berlin, Heidelberg, New York: Springer.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3