Monitoring of fouling within pipes using Electrical Impedance Spectroscopy

Author:

Anseth Ronnie1,Skeie Nils-Olav1,Waskaas Magne1

Affiliation:

1. University of South-Eastern Norway , Porsgrunn , Telemark , Norway

Abstract

Abstract The objective of the study described in this paper was to evaluate a monitoring system for fouling in pipes, based on impedance measurements using only one fixed frequency. The monitoring system observed the fouling growth (deposition layer and corrosion) inside a pipe which was subjected to a constant flow of liquid. The measurement frequency was specifically selected to optimize the sensitivity of the monitoring system towards the fouling growth. An electrical potential difference was applied to the pipe to generate an electrical field to accelerate the fouling growth in the experiment. Experimental results show a measurable change in the impedance magnitude (fouling growth) over the duration of the experiment (8 weeks). Results indicate that the measurement system, using one fixed frequency, is capable of in-situ monitoring of fouling growth in a pipe with a continuous flow of liquid.

Publisher

Walter de Gruyter GmbH

Subject

Electrical and Electronic Engineering,Instrumentation

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Preliminary design of a scanning resonant cell for beam screen surface impedance measurements;2022 IEEE International Instrumentation and Measurement Technology Conference (I2MTC);2022-05-16

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3