The Malgrange–Galois groupoid of the Painlevé VI equation with parameters

Author:

Blázquez-Sanz David1,Casale Guy2,Arboleda Juan Sebastián Díaz1

Affiliation:

1. Universidad Nacional de Colombia - Sede Medellín, Facultad de Ciencias, Escuela de Matemáticas , Medellín , Colombia

2. Univ. Rennes, CNRS , IRMAR-UMR 6625, F-35000 Rennes , France

Abstract

Abstract The Malgrange–Galois groupoid of Painlevé IV equations is known to be, for very general values of parameters, the pseudogroup of transformations of the phase space preserving a volume form, a time form and the equation. Here we compute the Malgrange–Galois groupoid of the Painlevé VI family including all parameters as new dependent variables. We conclude that it is the pseudogroup of transformations preserving the parameter values, the differential of the independent variable, a volume form in the dependent variables and the equation. This implies that a solution of a Painlevé VI equation depending analytically on the parameters does not satisfy any new partial differential equation (including derivatives with respect to parameters) which is not derived from Painlevé VI.

Publisher

Walter de Gruyter GmbH

Subject

Geometry and Topology

Reference30 articles.

1. D. Blázquez Sanz, G. Casale, J. S. Díaz Arboleda, Differential Galois theory and isomonodromic deformations. SIGMA Symmetry Integrability Geom. Methods Appl. 15 (2019), Paper No. 055, 35 pages. MR3988815 Zbl 1427.53024

2. S. Cantat, F. Loray, Dynamics on character varieties and Malgrange irreducibility of Painlevé VI equation. Ann. Inst. Fourier (Grenoble) 59 (2009), 2927–2978. MR2649343 Zbl 1204.34123

3. G. Casale, Sur le groupoïde de Galois d’un feuilletage. PhD thesis, Université Paul Sabatier – Toulouse III, 2004. https://tel.archives-ouvertes.fr/tel-00012021

4. G. Casale, Une preuve galoisienne de l’irréductibilité au sens de Nishioka–Umemura de la première équation de Painlevé. Astérisque no. 323 (2009), 83–100. MR2647966 Zbl 1209.12002

5. G. Casale, An introduction to Malgrange pseudogroup. In: Arithmetic and Galois theories of differential equations, volume 23 of Sémin. Congr., 89–113, Soc. Math. France, Paris 2011. MR3076080 Zbl 1356.34089

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3