Positive semigroups in lattices and totally real number fields

Author:

Fukshansky Lenny1,Wang Siki1

Affiliation:

1. Department of Mathematics , 850 Columbia Avenue, Claremont McKenna College , Claremont , CA 91711 , USA

Abstract

Abstract Let L be a full-rank lattice in ℝ d and write L + for the semigroup of all vectors with nonnegative coordinates in L. We call a basis X for L positive if it is contained in L +. There are infinitely many such bases, and each of them spans a conical semigroup S(X) consisting of all nonnegative integer linear combinations of the vectors of X. Such S(X) is a sub-semigroup of L +, and we investigate the distribution of the gaps of S(X) in L +, i.e. the points in L +S(X). We describe some basic properties and counting estimates for these gaps. Our main focus is on the restrictive successive minima of L + and of L +S(X), for which we produce bounds in the spirit of Minkowski’s successive minima theorem and its recent generalizations. We apply these results to obtain analogous bounds for the successive minima with respect to Weil heights of totally positive sub-semigroups of ideals in totally real number fields.

Publisher

Walter de Gruyter GmbH

Subject

Geometry and Topology

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Degree bounds for fields of rational invariants of Z/pZ and other finite groups;Journal of Pure and Applied Algebra;2024-10

2. Universal quadratic forms and Dedekind zeta functions;International Journal of Number Theory;2024-06-08

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3