𝔽 p 2 -maximal curves with many automorphisms are Galois-covered by the Hermitian curve

Author:

Bartoli Daniele1,Montanucci Maria2,Torres Fernando3

Affiliation:

1. Dipartimento di Matematica e Informatica, Università degli Studi di Perugia , via Vanvitelli 1, 06123 Perugia , Italy

2. Department of Applied Mathematics and Computer Science, Technical University of Denmark , Kongens Lyngby 2800 , Denmark

3. IMECC/UNICAMP, R. Sérgio Buarque de Holanda 651, Cidade Universitária “Zeferino Vaz" , 13083-859 , Campinas , SP-Brazil

Abstract

Abstract Let 𝔽 be the finite field of order q 2. It is sometimes attributed to Serre that any curve 𝔽-covered by the Hermitian curve H q + 1 : y q + 1 = x q + x ${{\mathcal{H}}_{q+1}}:{{y}^{q+1}}={{x }^{q}}+x$ is also 𝔽-maximal. For prime numbers q we show that every 𝔽-maximal curve x $\mathcal{x}$ of genus g ≥ 2 with | Aut(𝒳) | > 84(g − 1) is Galois-covered by H q + 1 . ${{\mathcal{H}}_{q+1}}.$ The hypothesis on | Aut(𝒳) | is sharp, since there exists an 𝔽-maximal curve x $\mathcal{x}$ for q = 71 of genus g = 7 with | Aut(𝒳) | = 84(7 − 1) which is not Galois-covered by the Hermitian curve H 72 . ${{\mathcal{H}}_{72}}.$

Publisher

Walter de Gruyter GmbH

Subject

Geometry and Topology

Reference55 articles.

1. N. Arakelian, S. Tafazolian, F. Torres, On the spectrum for the genera of maximal curves over small fields. Adv. Math. Commun. 12 (2018), 143–149. MR3808220 Zbl 1414.94949

2. D. Bartoli, M. Montanucci, F. Torres, Fp2−${{\mathbb{F}}_{{{p}^{2-}}}}$maximal curves with many automorphisms are Galois-covered by the Hermitian curve. Preprint 2018, arXiv 1708.03933v1 [math.AG]

3. D. Bartoli, M. Montanucci, G. Zini, AG codes and AG quantum codes from the GGS curve. Des. Codes Cryptogr. 86 (2018), 2315–2344. MR3845314 Zbl 1408.94993

4. D. Bartoli, M. Montanucci, G. Zini, Multi point AG codes on the GK maximal curve. Des. Codes Cryptogr. 86 (2018), 161–177. MR3742839 Zbl 1400.94194

5. B. W. Brock, Superspecial curves of genera two and three. PhD thesis, Princeton University 1993. MR2689446

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3