A relation between the curvature ellipse and the curvature parabola

Author:

Benedini Riul P.1,Oset Sinha R.2

Affiliation:

1. Instituto de Ciências Matemáticas e de Computação - USP , Av. Trabalhador são-carlense , 400 - Centro, CEP: 13566-590 , São Carlos , SP , Brazil

2. Departament de Matemàtiques , Universitat de València , Campus de Burjassot, 46100 , Burjassot , Spain

Abstract

Abstract At each point in an immersed surface in ℝ4 there is a curvature ellipse in the normal plane which codifies all the local second order geometry of the surface. Recently, at the singular point of a corank 1 singular surface in ℝ3, a curvature parabola in the normal plane which codifies all the local second order geometry has been defined. When projecting a regular surface in ℝ4 to ℝ3 in a tangent direction, corank 1 singularities appear generically. The projection has a cross-cap singularity unless the direction of projection is asymptotic, where more degenerate singularities can appear. In this paper we relate the geometry of an immersed surface in ℝ4 at a certain point to the geometry of the projection of the surface to ℝ3 at the singular point. In particular we relate the curvature ellipse of the surface to the curvature parabola of its singular projection.

Publisher

Walter de Gruyter GmbH

Subject

Geometry and Topology

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. The axial curvature for corank 1 singular surfaces;Tohoku Mathematical Journal;2022-09-01

2. Singular 3-manifolds in $${\mathbb {R}}^5$$;Revista de la Real Academia de Ciencias Exactas, Físicas y Naturales. Serie A. Matemáticas;2021-12-27

3. Geometry of surfaces in $$\mathbb R^5$$ through projections and normal sections;Revista de la Real Academia de Ciencias Exactas, Físicas y Naturales. Serie A. Matemáticas;2021-03-20

4. Relating second order geometry of manifolds through projections and normal sections;Publicacions Matemàtiques;2021-01-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3