Affiliation:
1. Institut für Mathematik , FU Berlin , Arnimallee 2,14195 Berlin , Germany .
Abstract
Abstract
We show that the f-vector sets of d-polytopes have non-trivial additive structure: They span affine lattices and are embedded in monoids that we describe explicitly. Moreover, for many large subclasses, such as the simple polytopes, or the simplicial polytopes, there are monoid structures on the set of f-vectors by themselves: “addition of f-vectors minus the f-vector of the d-simplex” always yields a new f-vector. For general 4-polytopes, we show that the modified addition operation does not always produce an f-vector, but that the result is always close to an f-vector. In this sense, the set of f-vectors of all 4-polytopes forms an “approximate affine semigroup”. The proof relies on the fact for d = 4 every d-polytope, or its dual, has a “small facet”. This fails for d > 4.
We also describe a two further modified addition operations on f-vectors that can be geometrically realized by glueing corresponding polytopes. The second one of these may yield a semigroup structure on the f-vector set of all 4-polytopes.
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. On the realization space of the cube;Journal of the European Mathematical Society;2023-06-14
2. Semi-algebraic sets of f-vectors;Israel Journal of Mathematics;2019-06-20