Totally isotropic subspaces of small height in quadratic spaces

Author:

Chan Wai Kiu1,Fukshansky Lenny2,Henshaw Glenn R.3

Affiliation:

1. Department of Mathematics and Computer Science, Wesleyan University, Middletown, CT 06459, USA

2. Department of Mathematics, 850 Columbia Avenue, Claremont McKenna College, Claremont, CA 91711, USA

3. Department of Mathematics, Engineering and Computer Science, LaGuardia Community College, 31-10 Thomson Avenue, Long Island City, NY 11101, USA

Abstract

Abstract Let K be a global field or , let F be a nonzero quadratic form on KN with N ≥ 2, and let V be a subspace of KN.We prove the existence of an infinite collection of finite families of small-height maximal totally isotropic subspaces of (V, F) such that each such family spans V as a K-vector space. This result generalizes and extends a well known theorem of Vaaler [16] and further contributes to the effective study of quadratic forms via height in the general spirit of Cassels’ theorem on small zeros of quadratic forms. All bounds on the height are explicit.

Publisher

Walter de Gruyter GmbH

Subject

Geometry and Topology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3