Extremum properties of lattice packing and covering with circles

Author:

Gruber Peter M.1

Affiliation:

1. Institut für Diskrete Mathematik und Geometrie, Technische Universität Wien, Wiedner Hauptstraße 8–10/1046, 1040 Vienna, Austria

Abstract

Abstract Recent results on extremum properties of the density of lattice packings of smooth convex bodies and balls extend and refine Voronoĭ’s classical criterion for balls. This article treats in more detail the special case of lattice packings and coverings with circular discs. The aim is to determine those lattices for which the densities of the corresponding packings and coverings with circular discs, and certain products and quotients thereof, are semi-stationary, stationary, extreme, and ultra-extreme. The latter notion is a sharper version of extremality. It turns out that in all cases where solutions exist, the regular hexagonal lattices are solutions. Unexpectedly, in a few cases the square lattices and in one case special parallelogram lattices are solutions too. A further surprise is the fact that the lattices forwhich the circle packing density is extreme coincide with the lattices with ultra-extreme density. For semi-stationarity, stationarity and ultra-extremality the duality between packing and covering results breaks down. All results may be interpreted in terms of binary positive definite quadratic forms.

Publisher

Walter de Gruyter GmbH

Subject

Geometry and Topology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3