Affiliation:
1. Università di Torino, Dipartimento di Matematica , via Carlo Alberto 10, 10123 Torino Italy
Abstract
Abstract
We prove a classification result for smooth complex Fano fourfolds of Picard number 3 having a prime divisor of Picard number 1, after a characterisation result in arbitrary dimension by Casagrande and Druel [5]. These varieties are obtained by blowing-up a ℙ1-bundle over a smooth Fano variety of Picard number 1 along a codimension 2 subvariety. We study in detail the case of dimension 4, and show that they form 28 families. We compute the main numerical invariants, determine the base locus of the anticanonical system, and study their deformations to give an upper bound to the dimension of the base of the Kuranishi family of a general member.