Affiliation:
1. University of Zagreb, Faculty of Electrical Engineering and Computing, Unska 3, 10000 Zagreb, Croatia
2. Ghent University, Department of Mathematics, Krijgslaan 281, 9000 Ghent, Belgium
Abstract
Abstract
We show that every i-tight set in the Hermitian variety H(2r + 1, q) is a union of pairwise disjoint (2r + 1)-dimensional Baer subgeometries
PG
(
2
r
+
1
,
q
)
$\text{PG}(2r+1,\,\sqrt{q})$
and generators of H(2r + 1, q), if q ≥ 81 is an odd square and i < (q
2/3 − 1)/2. We also show that an i-tight set in the symplectic polar space W(2r + 1, q) is a union of pairwise disjoint generators of W(2r + 1, q), pairs of disjoint r-spaces {Δ, Δ
⊥}, and (2r + 1)-dimensional Baer subgeometries. For W(2r + 1, q) with r even, pairs of disjoint r-spaces {Δ, Δ
⊥} cannot occur. The (2r + 1)-dimensional Baer subgeometries in the i-tight set of W(2r + 1, q) are invariant under the symplectic polarity ⊥ of W(2r + 1, q) or they arise in pairs of disjoint Baer subgeometries corresponding to each other under ⊥. This improves previous results where
i
<
q
5
/
8
/
2
+
1
$i \lt q^{5/8} / \sqrt{2} +1$
was assumed. Generalizing known techniques and using recent results on blocking sets and minihypers, we present an alternative proof of this result and consequently improve the upper bound on i to (q
2/3 − 1)/2. We also apply our results on tight sets to improve a known result on maximal partial spreads in W(2r + 1, q).
Reference34 articles.
1. J. Bamberg, S. Kelly, M. Law, T. Penttila, Tight sets and m-ovoids of finite polar spaces. J. Combin. Theory Ser. A114 (2007), 1293–1314. MR2353124 Zbl 1124.51003
2. L. Beukemann, K. Metsch, Small tight sets of hyperbolic quadrics. Des. Codes Cryptogr. 68 (2013), 11–24. MR3046332 Zbl 1277.51009
3. A. Blokhuis, On the size of a blocking set in PG(2, p). Combinatorica14 (1994), 111–114. MR1273203 Zbl 0803.05011
4. A. Blokhuis, Blocking sets in Desarguesian planes. In: Combinatorics, Paul Erdős is eighty, Vol. 2 (Keszthely, 1993), volume 2 of Bolyai Soc. Math. Stud., 133–155, János Bolyai Math. Soc., Budapest 1996. MR1395857 Zbl 0849.51005
5. A. Blokhuis, L. Lovász, L. Storme, T. Szőnyi, On multiple blocking sets in Galois planes. Adv. Geom. 7 (2007), 39–53. MR2290638 Zbl 1123.51012
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献