Dominance order on signed integer partitions

Author:

Bisi Cinzia1,Chiaselotti Giampiero2,Gentile Tommaso2,Oliverio Paolo Antonio2

Affiliation:

1. Dipartimento di Matematica e Informatica, Universitá di Ferrara, Via Machiavelli 35, 44121, Ferrara, Italy

2. Dipartimento di Matematica e Informatica, Universitá della Calabria, Via Pietro Bucci, Cubo 30b, 87036 Arcavacata di Rende (CS), Italy

Abstract

Abstract In 1973 Brylawski introduced and studied in detail the dominance partial order on the set Par(m) of all integer partitions of a fixed positive integer m. As it is well known, the dominance order is one of the most important partial orders on the finite set Par(m). Therefore it is very natural to ask how it changes if we allow the summands of an integer partition to take also negative values. In such a case, m can be an arbitrary integer and Par(m) becomes an infinite set. In this paperwe extend the classical dominance order in this more general case. In particular, we consider the resulting lattice Par(m) as an infinite increasing union on n of a sequence of finite lattices O(m, n). The lattice O(m, n) can be considered a generalization of the Brylawski lattice. We study in detail the lattice structure of O(m, n).

Publisher

Walter de Gruyter GmbH

Subject

Geometry and Topology

Cited by 13 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Granular computing on basic digraphs;Applicable Analysis and Discrete Mathematics;2022

2. Real subset sums and posets with an involution;International Journal of Algebra and Computation;2021-11-22

3. Decision systems in rough set theory: A set operatorial perspective;Journal of Algebra and Its Applications;2019-01

4. SYMMETRY GEOMETRY BY PAIRINGS;Journal of the Australian Mathematical Society;2018-10-22

5. Rough sets on graphs: New dependency and accuracy measures;Discrete Mathematics, Algorithms and Applications;2018-10

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3