Translation ovoids of unitary polar spaces

Author:

King O.1,Siciliano A.2

Affiliation:

1. School of Mathematics & Statistics, Newcastle University, Newcastle upon Tyne NE1 7RU, England, UK

2. Dipartimento di Matematica, Informatica ed Economia, Università degli Studi della Basilicata, 85100 Potenza, Italy

Abstract

Abstract An ovoid of a finite classical polar space is a set of points having exactly one point in common with every generator. An ovoid is a translation ovoid with respect to one of its points if it admits a collineation group fixing all totally isotropic lines through the point and acting regularly on the remaining points of the ovoid. Lunardon and Polverino proved in [11] that Q+(3; q), Q(4; q) and Q+(5; q) are the only finite orthogonal polar spaces having translation ovoids. In this paper we prove that H(3; q2) is the only finite unitary polar space having translation ovoids. We also prove that translation groups of ovoids of H(3; q2) contain only linear collineations.

Publisher

Walter de Gruyter GmbH

Subject

Geometry and Topology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3