Characterization of isometric embeddings of Grassmann graphs

Author:

Pankov Mark1

Affiliation:

1. Department of Mathematics and Computer Sciences, University ofWarmia and Mazury, Słoneczna 54, 10-710 Olsztyn, Poland

Abstract

Abstract Let V be an n-dimensional left vector space over a division ring R. We write Gk(V ) for the Grassmannian formed by k-dimensional subspaces of V and denote by Γk(V ) the associated Grassmann graph. Let also V′ be an n0-dimensional left vector space over a division ring R0. Isometric embeddings of Γk(V ) in Γk′(V′) are classified in [13]. A classification of J(n; k)-subsets in Gk′(V′), i.e. the images of isometric embeddings of the Johnson graph J(n; k) in Γk′(V′), is presented in [12]. We characterize isometric embeddings of Γk(V ) in Γk′(V′) as mappings which transfer apartments of Gk(V) to J(n; k)-subsets of Gk′(V′). This is a generalization of the earlier result concerning apartment preserving mappings [11, Theorem 3.10].

Publisher

Walter de Gruyter GmbH

Subject

Geometry and Topology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3