The generating rank of a polar Grassmannian

Author:

Cardinali Ilaria1,Giuzzi Luca2,Pasini Antonio1

Affiliation:

1. Department of Information Engineering and Mathematics , University of Siena , Via Roma 56, 53100 , Siena , Italy

2. D.I.C.A.T.A.M, Section of Mathematics, Università di Brescia , Via Branze 53, 25123 , Brescia , Italy

Abstract

Abstract In this paper we compute the generating rank of k-polar Grassmannians defined over commutative division rings. Among the new results, we compute the generating rank of k-Grassmannians arising from Hermitian forms of Witt index n defined over vector spaces of dimension N > 2n. We also study generating sets for the 2-Grassmannians arising from quadratic forms of Witt index n defined over V(N, 𝔽 q ) for q = 4, 8, 9 and 2nN ≤ 2n + 2. We prove that for N > 6 and anisotropic defect (polar corank) d ≠ 2 they can be generated over the prime subfield, thus determining their generating rank.

Publisher

Walter de Gruyter GmbH

Subject

Geometry and Topology

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. On orthogonal polar spaces;Linear Algebra and its Applications;2023-10

2. On the generation of some Lie-type geometries;Journal of Combinatorial Theory, Series A;2023-01

3. The generating and embedding ranks of hyperplanes of Grassmannians;Journal of Geometry;2022-05-21

4. Nearly all subspaces of a classical polar space arise from its universal embedding;Linear Algebra and its Applications;2021-10

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3