Affiliation:
1. Department of Mathematics, University of California, Davis , One Shields Avenue , Davis , CA USA
Abstract
Abstract
For
a
∈
$\begin{array}{}
\displaystyle
\mathbb{R}_{\geq 0}^{n}
\end{array}$
, the Tesler polytope Tes
n
(
a
) is the set of upper triangular matrices with non-negative entries whose hook sum vector is
a
. We first give a different proof of the known fact that for every fixed
a
0 ∈
$\begin{array}{}
\displaystyle
\mathbb{R}_{ \gt 0}^{n}
\end{array}$
, all the Tesler polytopes Tes
n
(
a
) are deformations of Tes
n
(
a
0). We then calculate the deformation cone of Tes
n
(
a
0). In the process, we also show that any deformation of Tes
n
(
a
0) is a translation of a Tesler polytope. Lastly, we consider a larger family of polytopes called flow polytopes which contains the family of Tesler polytopes and chracterize the flow polytopes which are deformations of Tes
n
(
a
0).
Reference26 articles.
1. D. Armstrong, A. Garsia, J. Haglund, B. Rhoades, B. Sagan, Combinatorics of Tesler matrices in the theory of parking functions and diagonal harmonics. J. Comb. 3 (2012), 451–494. MR3029443 Zbl 1291.05203
2. W. Baldoni, M. Vergne, Kostant partitions functions and flow polytopes. Transform. Groups 13 (2008), 447–469. MR2452600 Zbl 1200.52008
3. A. Barvinok, Integer points in polyhedra. European Mathematical Society, Zürich 2008. MR2455889 Zbl 1154.52009
4. C. Benedetti, R. S. González D'León, C. R. H. Hanusa, P. E. Harris, A. Khare, A. H. Morales, M. Yip, A combinatorial model for computing volumes of flow polytopes. Trans. Amer. Math. Soc. 372 (2019), 3369–3404. MR3988614 Zbl 1420.05011
5. E. R. Canfield, B. D. McKay, The asymptotic volume of the Birkhoff polytope. Online J. Anal. Comb. (2009) no. 4, 4 pages. MR2575172 Zbl 1193.15034