1. S. C. Anco, J. Pohjanpelto, Classification of local conservation laws of Maxwell’s equations. Acta Appl. Math. 69 (2001), 285–327. MR1885280 Zbl 0989.35126
2. I. M. Anderson, The variational bicomplex. Utah State University preprint (1989), http://math.uni.lu/~jubin/seminar/bicomplex.pdf.
3. A. V. Bocharov, V. N. Chetverikov, S. V. Duzhin, N. G. Khor’ kova, I. S. Krasil’ shchik, A. V. Samokhin, Y. N. Torkhov, A. M. Verbovetsky, A. M. Vinogradov, Symmetries and conservation laws for differential equations of mathematical physics, volume 182 of Translations of Mathematical Monographs. Amer. Math. Soc. 1999. MR1670044 Zbl 0911.00032
4. E. Fiorani, A. Spiro, Lie algebras of conservation laws of variational ordinary differential equations. J. Geom. Phys. 88 (2015), 56–75. MR3293396 Zbl 1308.70050
5. S. Germani, Leggi di conservazione e simmetrie: un approccio geometrico al Teorema di Noether. Tesi di Laurea Magistrale, Università di Camerino, Camerino, 2012.