Lie algebras of conservation laws of variational partial differential equations

Author:

Fiorani Emanuele1,Germani Sandra2,Spiro Andrea1

Affiliation:

1. Scuola di Scienze e Tecnologie , Università di Camerino , Via Madonna delle Carceri 9, 62032 Camerino (Macerata) , Italy

2. Via V. Alfieri 2, 30028 , Spinea (Venezia) , Italy

Abstract

Abstract We establish a version of Noether’s first Theorem according to which the (equivalence classes of) conserved quantities of given Euler–Lagrange equations in several independent variables are in one-to-one correspondence with the (equivalence classes of) vector fields satisfying an appropriate pair of geometric conditions, namely: (a) they preserve the class of vector fields tangent to holonomic submanifolds of a jet space; (b) they leave invariant the action from which the Euler–Lagrange equations are derived, modulo terms identically vanishing along holonomic submanifolds. Such a bijective correspondence Φ͠ between equivalence classes comes from an explicit (non-bijective) linear map Φ from vector fields into conserved differential operators, and not from a map into divergences of conserved operators as it occurs in other proofs of Noether’s Theorem. Where possible, claims are given a coordinate-free formulation and all proofs rely just on basic differential geometric properties of finite-dimensional manifolds.

Publisher

Walter de Gruyter GmbH

Subject

Geometry and Topology

Reference22 articles.

1. S. C. Anco, J. Pohjanpelto, Classification of local conservation laws of Maxwell’s equations. Acta Appl. Math. 69 (2001), 285–327. MR1885280 Zbl 0989.35126

2. I. M. Anderson, The variational bicomplex. Utah State University preprint (1989), http://math.uni.lu/~jubin/seminar/bicomplex.pdf.

3. A. V. Bocharov, V. N. Chetverikov, S. V. Duzhin, N. G. Khor’ kova, I. S. Krasil’ shchik, A. V. Samokhin, Y. N. Torkhov, A. M. Verbovetsky, A. M. Vinogradov, Symmetries and conservation laws for differential equations of mathematical physics, volume 182 of Translations of Mathematical Monographs. Amer. Math. Soc. 1999. MR1670044 Zbl 0911.00032

4. E. Fiorani, A. Spiro, Lie algebras of conservation laws of variational ordinary differential equations. J. Geom. Phys. 88 (2015), 56–75. MR3293396 Zbl 1308.70050

5. S. Germani, Leggi di conservazione e simmetrie: un approccio geometrico al Teorema di Noether. Tesi di Laurea Magistrale, Università di Camerino, Camerino, 2012.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3