On automorphisms of semistableG-bundles with decorations

Author:

Herrero Andres Fernandez1

Affiliation:

1. Department of Mathematics, Columbia University , 3990 Broadway , New York , , USA

Abstract

AbstractWe prove a rigidity result for automorphisms of points of certain stacks admitting adequate moduli spaces. It encompasses as special cases variations of the moduli ofG-bundles on a smooth projective curve for a reductive algebraic groupG. For example, our result applies to the stack of semistableG-bundles, to stacks of semistable Hitchin pairs, and to stacks of semistable parabolicG-bundles. Similar arguments apply to Gieseker semistableG-bundles in higher dimensions. We present two applications of the main result. First, we show that in characteristic 0 every stack of semistable decoratedG-bundles admitting a quasiprojective good moduli space can be written naturally as aG-linearized global quotientY/G, so the moduli problem can be interpreted as a GIT problem. Secondly, we give a proof that the stack of semistable meromorphicG-Higgs bundles on a family of curves is smooth over any base in characteristic 0.

Publisher

Walter de Gruyter GmbH

Subject

Geometry and Topology

Reference35 articles.

1. J. Alper: Good moduli spaces for Artin stacks. Ann. Inst. Fourier (Grenoble) 63 (2013), 2349–2402. MR3237451 Zbl 1314.14095

2. J. Alper: Adequate moduli spaces and geometrically reductive group schemes. Algebr. Geom. 1 (2014), 489–531. MR3272912 Zbl 1322.14026

3. J. Alper, D. Halpern-Leistner, J. Heinloth: Existence of moduli spaces for algebraic stacks. Preprint 2018, https://arxiv.org/abs/1812.01128v4

4. L. Álvarez Cónsul, O. García-Prada: Dimensional reduction, SL(2, C)-equivariant bundles and stable holomorphic chains, Internat. J. Math. 12 (2001), no. 2, 159–201. MR1823573 Zbl 1110.32305

5. L. Álvarez Cónsul, O. García-Prada, A. H. W. Schmitt: On the geometry of moduli spaces of holomorphic chains over compact Riemann surfaces. IMRP Int. Math. Res. Pap. (2006), Art. ID 73597, 82 pages. MR2253535 Zbl 1111.32012

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3