Affiliation:
1. Department of Mathematics, Columbia University , 3990 Broadway , New York , , USA
Abstract
AbstractWe prove a rigidity result for automorphisms of points of certain stacks admitting adequate moduli spaces. It encompasses as special cases variations of the moduli ofG-bundles on a smooth projective curve for a reductive algebraic groupG. For example, our result applies to the stack of semistableG-bundles, to stacks of semistable Hitchin pairs, and to stacks of semistable parabolicG-bundles. Similar arguments apply to Gieseker semistableG-bundles in higher dimensions. We present two applications of the main result. First, we show that in characteristic 0 every stack of semistable decoratedG-bundles admitting a quasiprojective good moduli space can be written naturally as aG-linearized global quotientY/G, so the moduli problem can be interpreted as a GIT problem. Secondly, we give a proof that the stack of semistable meromorphicG-Higgs bundles on a family of curves is smooth over any base in characteristic 0.
Reference35 articles.
1. J. Alper: Good moduli spaces for Artin stacks. Ann. Inst. Fourier (Grenoble) 63 (2013), 2349–2402. MR3237451 Zbl 1314.14095
2. J. Alper: Adequate moduli spaces and geometrically reductive group schemes. Algebr. Geom. 1 (2014), 489–531. MR3272912 Zbl 1322.14026
3. J. Alper, D. Halpern-Leistner, J. Heinloth: Existence of moduli spaces for algebraic stacks. Preprint 2018, https://arxiv.org/abs/1812.01128v4
4. L. Álvarez Cónsul, O. García-Prada: Dimensional reduction, SL(2, C)-equivariant bundles and stable holomorphic chains, Internat. J. Math. 12 (2001), no. 2, 159–201. MR1823573 Zbl 1110.32305
5. L. Álvarez Cónsul, O. García-Prada, A. H. W. Schmitt: On the geometry of moduli spaces of holomorphic chains over compact Riemann surfaces. IMRP Int. Math. Res. Pap. (2006), Art. ID 73597, 82 pages. MR2253535 Zbl 1111.32012