Exploring tropical differential equations

Author:

Cotterill Ethan1,López Cristhian Garay2,Luviano Johana3

Affiliation:

1. IMECC, Unicamp. Rua Sérgio Buarque de Holanda , 651, CEP 13083-859 , Campinas SP , Brazil

2. Centro de Investigación en Matemáticas, A.C. (CIMAT) Jalisco S/N, Col. Valenciana CP. Guanajuato, Gto , México

3. Universidad Autónoma Metropolitana-Azcapotzalco. Av. San Pablo 180, Col. Reynosa Tamaulipas, Alcaldía Azcapotzalco , , CDMX , México

Abstract

Abstract The purpose of this paper is fourfold. The first is to develop the theory of tropical differential algebraic geometry from scratch; the second is to present the tropical fundamental theorem for differential algebraic geometry, and show how it may be used to extract combinatorial information about the set of power series solutions to a given system of differential equations, both in the archimedean (complex analytic) and in the non-Archimedean (e.g., p-adic) setting. A third and subsidiary aim is to show how tropical differential algebraic geometry is a natural application of semiring theory, and in so doing, contribute to the valuative study of differential algebraic geometry. We use this formalism to extend the fundamental theorem of partial differential algebraic geometry to the differential fraction field of the ring of formal power series in arbitrarily (finitely many variables; in doing so we produce new examples of non-Krull valuations that merit further study in their own right.

Publisher

Walter de Gruyter GmbH

Subject

Geometry and Topology

Reference22 articles.

1. F. Aroca, C. Garay, Z. Toghani, The fundamental theorem of tropical differential algebraic geometry. Pacific J. Math. 283 (2016), 257–270. MR3519102 Zbl 1401.13078

2. T. S. Blyth, Residuated mappings. Order 1 (1984), 187–204. MR764325 Zbl 0553.06001

3. L. Bossinger, S. Falkensteiner, C. Garay López, M. P. Noordman, Tropical initial degeneration for systems of algebraic differential equations. In preparation.

4. F. Boulier and M. Haiech, The Ritt–Raudenbusch theorem and tropical differential geometry. Preprint 2019, hal-02403365v2

5. V. Delos, D. Teissandier, Minkowski sum of polytopes defined by their vertices. J. Appl. Math. Phys. 3 (2015), 62–67.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3