Electrochemical hydrogen production from humid air using cation-modified graphene oxide membranes

Author:

Hamidah Nur Laila12,Shintani Masataka1,Ahmad Fauzi Aynul Sakinah1,Kitamura Shota1,Mission Elaine G.1,Hatakeyama Kazuto3,Sasaki Mitsuru4,Quitain Armando T.5,Kida Tetsuya6

Affiliation:

1. Department of Applied Chemistry and Biochemistry , Graduate School of Science and Technology, Kumamoto University , Kumamoto 860-8555 , Japan

2. Department of Engineering Physics Institut Teknologi Sepuluh Nopember , Surabaya 60111 , Indonesia

3. Department of Materials and Chemistry , Nanomaterials Research Institute, National Institute of Advanced Industrial Science and Technology (AIST) , Tsukuba 305-8565 , Japan

4. Institute of Pulsed Power Science, Kumamoto University , Kumamoto , Japan

5. College of Cross-Cultural and Multidisciplinary Studies, Kumamoto University , Kumamoto , Japan

6. Division of Materials Science, Faculty of Advanced Science and Technology , Kumamoto University , Kumamoto , Japan

Abstract

Abstract Water electrolysis is an environment-friendly process of producing hydrogen with zero-carbon emission. Herein, we studied the water vapor electrolysis using a proton-conducting membrane composed of graphene oxide (GO) nanosheets intercalated with cations (Al3+ and Ce3+). We examined the effect of cation introduction on the physical and chemical structures, morphology, thermal and chemical stabilities, and the proton conductivity of stacked GO nanosheet membranes by X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR), X-ray photoemission spectroscopy (XPS), Raman spectroscopy, atomic force microscopy (AFM), dynamic light scattering (DLS), thermogravimetric-differential thermal analysis (TG-DTA), and electrochemical impedance spectroscopy (EIS). Concentration cell measurements revealed that the cation-modified membranes are pure proton conductors at room temperature. The proton conductivity of a GO membrane was much improved by cation modification. The cation-modified GO membranes, sandwiched with Pt/C electrodes as the cathode and anode, electrolyzed humidified air to produce hydrogen at room temperature, indicating the feasibility of this carbon-based electrochemical device.

Funder

Kato Foundation for Promotion of Science

Ministry of Education, Culture, Sports, Science and Technology

Exploratory Research for Advanced Technology

Publisher

Walter de Gruyter GmbH

Subject

General Chemical Engineering,General Chemistry

Reference38 articles.

1. A. J. Esswein and D. G. Nocera, Chem. Rev.107, 4022 (2007).

2. T. Hibino, K. Kobayashi, M. Ito, Q. Ma, M. Nagao, M. Fukui, S. Teranishi, ACS Sustain. Chem. Eng.6, 9360 (2018).

3. Y. H. Lee, J. Kim, J. Oh, ACS Appl. Mater. Interfaces10, 33230 (2018).

4. J. Mo, B. I. Stefanov, T. H. M. Lau, T. Chen, S. Wu, Z. Wang, X.-Q. Gong, I. Wilkinson, G. Schmid, S. C. E. Tsang, ACS Appl. Energy Mater.2, 1221 (2019).

5. E. López-Fernández, J. Gil-Rostra, J. P. Espinós, A. R. González-Elipe, A. de Lucas Consuegra, F. Yubero, ACS Catal.10, 6159 (2020).

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3