The VES KM: a pathway for protein folding in vivo

Author:

Cruzeiro Leonor1ORCID

Affiliation:

1. CCMAR and Physics, FCT, Universidade do Algarve , Campus de Gambelas , 8005-139 Faro , Portugal

Abstract

Abstract While according to the thermodynamic hypothesis, protein folding reproducibility is ensured by the assumption that the native state corresponds to the minimum of the free energy in normal cellular conditions, here, the VES kinetic mechanism for folding in vivo is described according to which the nascent chain of all proteins is helical and the first and structure defining step in the folding pathway is the bending of that initial helix around a particular amino acid site. Molecular dynamics simulations are presented which indicate both the viability of this mechanism for folding and its limitations in the presence of a Markovian thermal bath. An analysis of a set of protein structures formed only of helices and loops suggests that bending sites are correlated with regions bounded, on the N-side, by positively charged amino acids like Lysine and Histidine and on the C-side by negatively charged amino acids like Aspartic acid.

Publisher

Walter de Gruyter GmbH

Subject

General Chemical Engineering,General Chemistry

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Stabilization of hydrogen-bonded molecular chains by carbon nanotubes;Chaos: An Interdisciplinary Journal of Nonlinear Science;2024-04-01

2. Knowns and unknowns in the Davydov model for energy transfer in proteins;Low Temperature Physics;2022-12

3. Statistical Evidence for a Helical Nascent Chain;Biomolecules;2021-02-26

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3