Synthesis and biological evaluation of S-simplexides and other analogues of simplexide

Author:

Roux Amélie1,Loffredo Stefania2,Ferrara Anne Lise2,Murphy Paul V.1

Affiliation:

1. School of Chemistry, National University of Ireland Galway , University Road , Galway H91 TK33 , Ireland

2. Department of Translational Medical Sciences and Center for Basic and Clinical Immunology Research (CISI) , University of Naples Federico II , WAO Center of Excellence , Naples , Italy

Abstract

Abstract Simplexides are natural glycolipids isolated from the marine sponge Plakortis simplex, and contain alkyl 4-O-(α-D-glucopyranosyl)-β-D-galactopyranoside. Simplexides can release of cytokines (IL-6) and chemokines (CXCL-8) from human monocytes and cause the expansion of natural killer T-cells (iNKTs) in vitro, with iNKTs contributing to the sustenance of immune homeostasis. Herein, the stereoselective syntheses of S-glycosidic analogues, i.e. S-simplexides, are described. The routes included Lewis acid promoted anomerisation of glycosyl thiols and thioglycolipids, as well as anomeric S-alkylation. Synthesis of O-glycosidic analogues are included. Heptadecanyl O- and S-glycosides as well as the 17-tritriacontyl 4-O-(α-D-glucopyranosyl)-β-D-galactopyranoside, a component of the natural simplexide isolate, all induced IL-6 and CXCL-8 production at both 10 and 30 μg/mL concentrations from PBMCs whereas the two S-simplexides were inactive. It is speculated that the lack of activity for the S-disaccharide analogue could be due to inhibition of cellular α-glucosidase, preventing degradation of the simplex disaccharide to a simpler galactopyranoside, whereas lack of activity for the S-galactolipid analogue could be due to increased conformational flexibility of S-glycosides. On the other hand, simpler unbranched O- and S-glycolipid analogues were active. Natural simplexide, and a synthetic simplexide, the 18-pentatriacontanyl 4-O-(α-D-glucopyranosyl)-β-D-galactopyranoside, were more potent than the new compounds tested.

Funder

Science Foundation Ireland

European Regional Development Fund

Publisher

Walter de Gruyter GmbH

Subject

General Chemical Engineering,General Chemistry

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3