Research on green technologies for immobilizing mercury in waste to minimize chemical footprint

Author:

Makarova Anna1,Fedoseev Andrew2,Yakubovich Liubov3

Affiliation:

1. Mendeleyev University of Chemical Technology of Russia, UNESCO Chair in Green Chemistry for Sustainable Development, Moscow 125047, Russian Federation, Tel.: +7-910-459-2664

2. Mendeleyev University of Chemical Technology of Russia, UNESCO Chair in Green Chemistry for Sustainable Development, Moscow 125047, Russian Federation

3. I. Sechenov First Moscow State Medical University, Chair of Analytical, Physical and Colloid Chemistry, 2-4 Bolshaya Pirogovskaya St., Moscow 119991, Russian Federation

Abstract

AbstractThis paper is devoted to the use of the principles of green chemistry in the search for technologies to reduce the chemical footprints of areas. The chemical footprint for mercury and its compounds was taken as an example to study. These chemicals belong to priority pollutants and their ever-increasing amounts in the environment have caused concern around the world, which is reflected in the adoption of the Minamata Convention. The Minamata Convention aims to protect human health and the environment from anthropogenic releases of mercury and mercury compounds. This Convention is an important component of efforts to achieve sustainable, inclusive and resilient human development through SDGs, which were adopted in September 2015 and especially SDG Goal 12: Ensure sustainable consumption and production patterns. Relevancy of this work is due to the need for the adopting of a series of measures to withdraw some mercury-containing goods from the production cycle. Also, one of the most important statements of the Convention is in reference to the issue of mercury contamination when recycling mercury. An important aspect of the work described in this paper is the reduction of mercury pollution from mercury-containing waste products by the development of technology in accordance with the principles of green chemistry. These are energy-efficient and without waste -water discharge technology. The main result of this work is the fundamental research for a transformation of elemental mercury and its compounds into less dangerous forms for the human body and the environment, providing a guaranteed absence of mercury-containing waste in the atmosphere and water systems. Various conditions for reaction of the immobilization of metallic mercury in mercury-containing wastes were investigated and it was established that it proceeded best under the following conditions: Reaction of metallic mercury with elementary sulfur;A ball mill is used as a reactor, which ensures constant updating of the contact area of the phases;For a good dispersion of mercury and for a relatively quick and complete reaction a large excess of sulfur up to 6500 % by stoichiometry (e.g. ratio of mercury:sulfur = 1:1.5 by weight) is necessary;The addition of a very small amount of water also has a positive effect (hydromodulus of Solid:Liquid = 3:1 by weight).

Funder

RFBR

Publisher

Walter de Gruyter GmbH

Subject

General Chemical Engineering,General Chemistry

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3