Assessing the quality of GEOID12B model through field surveys

Author:

Elaksher Ahmed,Kamtchang Franck,Wegmann Christian,Guerrero Adalberto

Abstract

AbstractElevation differences have been determined through conventional ground surveying techniques for over a century. Since the mid-80s GPS, GLONASS and other satellite systems have modernized the means by which elevation differences are observed. In this article, we assessed the quality of GEIOD12B through long-occupation GNSS static surveys. A set of NGS benchmarks was occupied for at least one hour using dual-frequency GNSS receivers. Collected measurements were processed using a single CORS station at most 24 kilometers from the benchmarks. Geoid undulation values were driven by subtracting measured ellipsoidal heights from the orthometric heights posted on the NGS website. To assess the quality of GEOID12B, we compared our computed vertical shifts at the benchmarks with those estimated from GEOID12B published by NGS. In addition, Kriging model was used to interpolate local maps for the geoid undulations from the benchmark heights. The maps were compared with corresponding parts of GEOID12B. No biases were detected in the results and only shifts due to random errors were found. Discrepancies in the range of ten centimetres were noticed between our geoid undulation and the values available from NGS.

Publisher

Walter de Gruyter GmbH

Subject

Earth and Planetary Sciences (miscellaneous),Engineering (miscellaneous),Modelling and Simulation

Reference64 articles.

1. Recovery of orthometric heights from ellipsoidal heights using offsets method over Japan;Earth, Planets and Space,2015

2. GPS ellipsoid height calibration to determine the approximate mean sea level (orthometric) height;International Journal of Advanced Research in Engineering and Applied Sciences,2013

3. Towards an accurate definition of the local geoid model in Egypt using GPS/leveling data: a case study at Rosetta zone;International Journal of Innovative Science and Modern Engineering,2014

4. Accuracy of GPS rapid static positioning: application to Koyulhisar Landslide, central Turkey;Survey Review,2011

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3