Eco friendly synthesis and characterization of zinc oxide nanoparticles from Aegle marmelos and its cytotoxicity effects on MCF-7 cell lines

Author:

Dhayalan Manikandan1,Selvaraj Malathi2,Karthick Kumar B3,Mohammed Riyaz S.U.4,Sillanpää Mika5

Affiliation:

1. Anticancer Bioscience, Ltd . Tianfu International Biotown Chengdu, 610000 , China

2. Centre for Advanced Studies in Botany, Guindy Campus , University of Madras , Chennai - India

3. Department of Textile Technology , A.C.Tech, Anna University , Chennai - , Tamilnadu , India

4. Animal Tissue culture unit, PG & Research Department of Biotechnology , Islamiah College (Autonomous) , Newtown , Vaniyambadi - 635752 , Tamilnadu , India

5. Environmental Engineering and Management Research Group , Ton Duc Thang University , Ho Chi Minh City , Vietnam ; Faculty of Environment and Labour Safety , Ton Duc Thang University , Ho Chi Minh City , Vietnam

Abstract

Abstract An attempt was made to synthesize zinc oxide gum white nanoparticles (ZnO-GWNPs) by the greenway approach using Aegle marmelos (Bael fruit) juice extract as a capping and reducing agent. Synthesis of ZnO-GWNPs by greener approach is safer, more economical, more energy-efficient, eco-friendlier, and less toxic than chemically synthesized counterparts. The optical properties of the ZnO-GWNPs were ascertained through UV-Vis spectroscopy, Fourier Transform-Infrared (FT-IR), X-ray diffraction (XRD), High-resolution transmittance electron microscopy (HRTEM). A characteristic absorption peak at 385nm confirmed the presence of ZnO-GWNP using UV-Vis spectroscopy. FTIR spectrum revealed that the characteristic absorption peak of the Zn-O bond was observed at 467 cm-1. The XRD result for the ZnO showed the tendency of the three most intense diffraction peaks. The average crystallite size ZnO NPs at scattering angle (2θ) 22.89 and 32.15 was 39.14 and 26.08 nm and it showed the presence of miller indices of (100), (002), (101), (102) respectively. The EDX spectrum gave strong signals for zinc and oxygen indicating the occurrence of the nanoparticles in their oxide form rather than the pure zinc form. The SEM image showed the surface morphology of ZnO-GW NPs and the HR-TEM image showed the crystalline nature of ZnO-GW NPs. Cytotoxicity study of ZnO-GW NPs was determined against MCF-7 cell lines and the IC50 values were found to be 40 µg/mL and 60 µg/mL at 24 h and 48 h respectively.

Publisher

Walter de Gruyter GmbH

Subject

General Earth and Planetary Sciences,General Environmental Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3