Pure, lithium- or magnesium-doped ferroelectric single crystals of Ca9Y(VO4)7: cation arrangements and phase transitions

Author:

Lazoryak Bogdan I.1,Deyneko Dina V.1,Aksenov Sergey M.2,Stefanovich Sergey Yu.1,Fortalnova Elena A.3,Petrova Darya A.1,Baryshnikova Oksana V.1,Kosmyna Miron B.4,Shekhovtsov Aleksey N.4

Affiliation:

1. Chemistry Department , Lomonosov Moscow State University , Moscow 119991 , Russia

2. FSRC “Crystallography and Photonics” RAS , Leninskii pr. 59 , Moscow 119333 , Russia

3. RUDN University , Moscow 117198 , Russia

4. Institute for Single Crystals, NAS of Ukraine , Nauki Ave. 60 , Kharkov 61001 , Ukraine

Abstract

Abstract Single crystals of Ca9Y(VO4)7 (1), Ca9Y(VO4)7:Li+ (2) and Ca9Y(VO4)7:Mg2+ (3) were grown by the Czochralski method. Their chemical composition was analyzed by ICP spectroscopy and their crystal structure was examined by single crystal X-ray analysis. The crystals are characterized by trigonal symmetry, space group R3c. Hexagonal unit-cell parameters are as follows: a=10.8552(1) Å, c=38.0373(2) Å, V=3881.65(1) Å3 for 1; a=10.8570(1) Å, c=38.0161(3) Å, V=3880.77(4) Å3 for 2; a=10.8465(1) Å, c=38.0366(2) Å, V=3875.36(3) Å3 for 3. All crystals are characterized by β-Ca3(PO4)2-type structure with statistical distribution of Ca2+ and Y3+ over M1, M2 and M5 sites in different ratios and with completely empty M4-cationsite. The impurity of Mg2+cations in structure 2 has been detected in octahedral M5 site. Ferroelectric phase transitions are evidenced by DSC and SHG. At about 1220 and 1300 K, they demonstrate phase transitions. Upon heating the symmetry of the crystal structure changes according to the scheme R3cRcRm and is restored during consequent cooling. The first of them is of ferroelectric and the second of non-ferroelectric nature. Even a small amount of impurities in Ca9Y(VO4)7 structure is accompanied by a noticeable decrease in the temperature of the ferroelectric-paraelectric phase transition.

Publisher

Walter de Gruyter GmbH

Subject

Inorganic Chemistry,Condensed Matter Physics,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3