Affiliation:
1. Lawrence Berkeley National Laboratory , 1 Cyclotron Road , 94720 Berkeley , USA
2. IMDEA Materials Institute , C/Eric Kandel 2, 28906 Getafe , Madrid , Spain
Abstract
Abstract
Zeolites are important microporous framework materials, where 200+ structures are known to exist and many millions so-called hypothetical materials can be computationally created. Here, we screen the “Deem” database of hypothetical zeolite structures to find experimentally feasible and industrially relevant materials. We use established and existing criteria and structure descriptors (lattice energy, local interatomic distances, TTT angles), and we develop new criteria which are based on 5-th neighbor distances to T-atoms, tetrahedral order parameters (or, tetrahedrality), and porosity and channel dimensionality. Our filter funnel for screening the most attractive zeolite materials that we construct consists of nine different types of criteria and a total of 53 subcriteria. The funnel reduces the pool of candidate materials from initially >300,000 to 70 and 33, respectively, depending on the channel dimensionality constraint applied (2- and 3-dimensional vs. only 3-dimensional channels). We find that it is critically important to define longer range and more stringent criteria such as the new 5-th neighbor distances to T-atoms and the tetrahedrality descriptor in order to succeed in reducing the huge pool of candidates to a manageable number. Apart from four experimentally achieved structures (BEC, BOG, ISV, SSF), all other candidates are hypothetical frameworks, thus, representing most valuable targets for synthesis and application. Detailed analysis of the screening data allowed us to also propose an exciting future direction how such screening studies as ours could be improved and how framework generating algorithms could be competitively optimized.
Subject
Inorganic Chemistry,Condensed Matter Physics,General Materials Science
Reference75 articles.
1. A. F. Cronstedt, Rön och beskrifning om en obekant bärg art, som kallas Zeolites. Kongl. Svenska Vet. Ac. Handl.1756, 17, 120.
2. E. M. Flanigen, R. W. Broach, S. T. Wilson, Introduction. in Zeolites in Industrial Separation and Catalysis, (Ed. Santi Kulprathipanja), Wiley-VCH, Weinheim, p. 1, 2010.
3. S. Abate, K. Barbera, G. Centi, P. Lanzafame, S. Perathoner, Disruptive catalysis by zeolites. Catal. Sci. Technol.2016, 6, 2485.
4. K. Tanabe, W. F. Hölderich, Industrial application of solid acid-base catalysts. Appl. Catal. A1999, 181, 399.
5. P. Payra, P. K. Dutta, Zeolites: a primer. in Handbook of Zeolite Science and Technology, (Eds. S. M. Auerbach, K. A. Carrado, and P. K. Dutta) Marcel Dekker, Inc., New York, U.S.A., p. 1, 2003.
Cited by
13 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献