Crystal structure refinement of MnTe2, MnSe2, and MnS2: cation-anion and anion–anion bonding distances in pyrite-type structures

Author:

Tokuda Makoto1,Yoshiasa Akira1,Mashimo Tsutomu1,Arima Hiroshi2,Hongu Hidetomo1,Tobase Tsubasa1,Nakatsuka Akihiko3,Sugiyama Kazumasa2

Affiliation:

1. Graduate School of Science and Technology, Kumamoto University , Kumamoto 860-8555 , Japan

2. Institute for Materials Research, Tohoku University , Sendai 980-8577 , Japan

3. Graduate School of Science and Engineering, Yamaguchi University , Ube 755-8611 , Japan

Abstract

Abstract The stability of hauerite (MnS2) as compared to that of pyrite (FeS2) can be explained by the long Mn–S distance and departure from the typical pyrite-type structures. The structural differences of MnX2 compounds (X=S, Se, and Te) are the result of spin configurations that are different than those of other MX2 compounds; however, the arrangement of d-electrons and the size of the ions in MnX2 compounds do not clearly explain why Mn2+ in MnX2 does not exist as a low spin state. To investigate the structural differences of MnX2 compounds, we synthesized single-crystal MnTe2 and MnSe2 and performed single-crsytal X-ray diffraction experiments. The single-crystal X-ray diffraction experiments were conducted on MnTe2 [a=6.9513(1) Å, u-parameter=0.38554(2), space group Pa3̅, Z=4], MnSe2 [a=6.4275(2) Å, u-parameter=0.39358(2)], MnS2 [hauerite; a=6.1013(1) Å, u-parameter=0.40105(4), obtained from Osorezan, Aomori, Japan], and FeS2 [pyrite; a=5.4190(1) Å, u-parameter 0.38484(5), obtained from Kawarakoba, Nagasaki, Japan]. The X-ray intensity datasets of these compounds do not show any evidence of symmetry reduction. In MnS2, the S–S distance is 2.0915(8) Å, which is significantly shorter than that of FeS2 (2.1618(9) Å), and the mean square displacement of S (U 11=0.00915(9) Å2) is smaller than that of Mn (U 11=0.01137(9) Å2). The thermal vibration characteristics of MnX2 compounds are significantly different than those of FeS2. Based on structural refinement data, we discuss the low spin state of MnX2 compounds and the structural stability of pyrite-type structures.

Publisher

Walter de Gruyter GmbH

Subject

Inorganic Chemistry,Condensed Matter Physics,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3