Phase composition and morphological analysis of human gallstones using IR spectroscopy, scanning electron microscopy and X-ray Rietveld analysis

Author:

Pramanik Samiran1,Ghosh Soumen2,Roy Arkaprovo3,Mukherjee Ramanuj4,Mukherjee Alok Kumar1

Affiliation:

1. Department of Physics, Jadavpur University, Jadavpur, Kolkata-700032, West Bengal, India

2. Department of Physics, Gour Mahavidyalaya, Malda-732142, West Bengal, India

3. Department of Surgery, Malda Medical College and Hospital, Malda-732101, West Bengal, India

4. R.G. Kar Medical College and Hospital, Kolkata-700004, West Bengal, India

Abstract

Abstract Quantitative phase composition and morphological characterization of 12 human gallbladder stones (GS1–GS12) retrieved from patients of eastern India have been carried out using IR-spectroscopy, powder X-ray diffraction (PXRD) and scanning electron microscopy (SEM). The FTIR spectra indicated that the primary composition of gallstones studied was cholesterol. X-ray powder diffraction study revealed cholesterol monohydrate (CHM) as the major crystalline phase in GS1–GS12. The Rietveld analysis showed that nine of the gallstones were composed exclusively of CHM, while the remaining three stones contained in addition to CHM, small amounts (4.2–10.6 wt%) of calcium carbonate as aragonite and vaterite. The crystallite size of CHM in GS1–GS12 varied between 82(6) and 249(3) nm. The SEM images of gallstones showed different crystal habits of CHM such as plates, thin rods, rectangular and hexagonal blocks, which resulted into different levels of agglomeration at the mesoscopic scale. Presence of numerous parasitic eggs with a typical muskmelon surface in three gallstones (GS2, GS7 and GS9) suggests possible association between the liver fluke infection and biliary stone formation in these patients. To the best of our knowledge, the study constitutes the first report of X-ray quantitative phase analysis of gallstones using the Rietveld methodology.

Publisher

Walter de Gruyter GmbH

Subject

Inorganic Chemistry,Condensed Matter Physics,General Materials Science

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3