Short is strong: experimental electron density in a very short N···I halogen bond

Author:

Wang Ruimin1,Hartnick Daniel1,Englert Ulli1

Affiliation:

1. Institute of Inorganic Chemistry, RWTH Aachen University , Landoltweg 1 , Aachen 52074 , Germany

Abstract

Abstract 2,3,5,6-Tetrafluoro-1,4-diiodobenzene and 4-(dimethylamino)pyridine co-crystallize in 1:2 stoichiometry. A diffraction experiment at standard resolution was already conducted in 2010 and revealed one of the shortest N···I contacts ever reported. We collected X-ray intensities at 100 K up to a very high resolution of 1.23 Å−1. These experimental data allowed to refine a structure model based on atom-centered multipoles according to the Hansen-Coppens approach and provided an experimental electron density. A subsequent analysis with the help of Bader’s atoms in molecules theory showed a strong interaction between the pyridine N atom and the σ hole of its closest iodine neighbor on the halogenated benzene. This contact is characterized by a distance of 2.6622(4) Å and associated with a remarkably large electron density of 0.359(5) e⋅Å−3 in the (3, −1) critical point, unprecedented for a secondary interaction. This bona fide shortest halogen bond ever investigated by an experimental charge density study is associated with a significantly negative total energy density in the bond critical point and thus can reliably be classified as strong. Both the electron density and the position of the bond critical point suggest to compare the short N···I contact to coordinative or covalent bonds rather than to σ hole interactions.

Publisher

Walter de Gruyter GmbH

Subject

Inorganic Chemistry,Condensed Matter Physics,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3