Development of silver-doped copper oxide and chitosan nanocomposites for enhanced antimicrobial activities

Author:

Anwar Yasir12ORCID,Jaha Hisham Faiz1,Ul-Islam Mazhar3,Kamal Tahseen4,Khan Sher Bahadar5,Ullah Ihsan1,Al-Maaqar Saleh M.16,Ahmed Sameer1

Affiliation:

1. Department of Biological Sciences, Faculty of Science , King Abdulaziz University , Jeddah , Saudi Arabia

2. Centre of Excellence in Bionanoscience Research , King Abdulaziz University , Jeddah 21589 , Saudi Arabia

3. Department of Chemical Engineering , Dhofar University , Şalālah 211 , Oman

4. Center of Excellence for Advanced Materials Research , King Abdulaziz University , P. O. Box 80203 , Jeddah 21589 , Saudi Arabia

5. Chemistry Department , Faculty of Science, King Abdulaziz University , P.O. Box 80203 , Jeddah 21589 , Saudi Arabia

6. Department of Biology , Faculty of Education, Albaydha University , Al-Baydha , Yemen

Abstract

Abstract Antimicrobial resistance (AMR) has emerged as a significant and pressing public health concern, posing serious challenges to effectively preventing and treating persistent diseases. Despite various efforts made in recent years to address this problem, the global trends of AMR continue to escalate without any indication of decline. As AMR is well-known for antibiotics, developing new materials such as metal containing compounds with different mechanisms of action is crucial to effectively address this challenge. Copper, silver, and chitosan in various forms have demonstrated significant biological activities and hold promise for applications in medicine and biotechnology. Exploring the biological properties of these nanoparticles is essential for innovative therapeutic approaches in treating bacterial and fungal infections, cancer, and other diseases. To this end, the present study aimed to synthesize silver@copper oxide (Ag@CuO) nanoparticles and its chitosan nanocomposite (Chi-Ag@CuO) to investigate their antimicrobial efficacy. Various established spectroscopic and microscopic methods were employed for characterization purposes, encompassing scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDX), X-ray diffraction (XRD), and Fourier transform infrared spectroscopy (FTIR). Subsequently, the antimicrobial activity of the nanoparticles was assessed through MIC (minimum inhibitory concentration), MBC (minimum bactericidal concentration), and well-disk diffusion assays against Pseudomonas aeruginosa, Acinetobacter baumannii Staphylococcus aureus, Staphylococcus epidermidis, and Candida albicans. The size of the CuO-NPs, Ag@CuO, and Chi-Ag@CuO NPs was found to be 70–120 nm with a spherical shape and an almost uniform distribution. The nanocomposites were found to possess a minimum inhibitory concentration (MIC) of 5 μg/mL and a minimum bactericidal concentration (MBC) of 250 μg/mL. Moreover, these nanocomposites generated varying clear inhibition zones, with diameters ranging from a minimum of 9 ± 0.5 mm to a maximum of 25 ± 0.5 mm. Consequently, it is evident that the amalgamation of copper–silver–chitosan nanoparticles has exhibited noteworthy antimicrobial properties in the controlled laboratory environment, surpassing the performance of other types of nanoparticles.

Publisher

Walter de Gruyter GmbH

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3