Analytic approximation of Volterra’s population model
Author:
Affiliation:
1. Department of Applied Mathematics, Faculty of Mathematical Science, University of Guilan, Rasht , Iran
2. Department of Mathematics, Rasht Branch, Islamic Azad University, Rasht , Iran
Abstract
Publisher
Walter de Gruyter GmbH
Subject
General Medicine
Reference22 articles.
1. 1. Scudo F (1971) Vito Volterra and theoretical ecology. Theor Popul Biol 2:1-23
2. 2. TeBeest K (1997) Numerical and analytical solutions of Volterra’s population model. SIAM Rev 39:484-493
3. 3. Small R (1983) Population growth in a closed system. SIAM Rev 25:93-95
4. 4. Dehghan M, Shahini M (2015) Rational pseudospectral approximation to the solution of a nonlinear integro-differential equation arising in modeling of the population growth. Appl Math Modelling 39:5521-5530
5. 5. Mohyud-Din ST, Yıldırım A, Gulkanat Y (2010) Analytical solution of Volterra’s population model. J King Saud Univ 22:247-250
Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Collocation method using auto-correlation functions of compact supported wavelets for solving Volterra’s population model;Chaos, Solitons & Fractals;2023-10
2. Steady natural convection Couette flow with wall conduction and thermal boundary condition of third kind;ZAMM - Journal of Applied Mathematics and Mechanics / Zeitschrift für Angewandte Mathematik und Mechanik;2020-05-18
3. A new algorithm for the solution of nonlinear two-dimensional Volterra integro-differential equations of high-order;Journal of Computational and Applied Mathematics;2020-01
4. An Approximate Analytical Solution of the Nonlinear Schrödinger Equation with Harmonic Oscillator Using Homotopy Perturbation Method and Laplace-Adomian Decomposition Method;Advances in Mathematical Physics;2018-12-05
5. An analytical approach for systems of fractional differential equations by means of the innovative homotopy perturbation method;Mathematica Moravica;2018
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3