A Neural Computational Intelligence Method Based on Legendre Polynomials for Fuzzy Fractional Order Differential Equation

Author:

Khan N. A.1,Shaikh A.2,Zahoor Raja M. A.3,Khan S.2

Affiliation:

1. Department of Mathematics, University of Karachi, Karachi 75270, Pakistan

2. Department of Mathematics, of Karachi, Karachi 75270, Pakistan

3. Department of Electrical Engineering, COMSATS Institute of Information Technology, Attock, Pakistan

Abstract

Abstract In this article, Legendre simulated annealing, neural network (LSANN) is designed for fuzzy fractional order differential equations, which is employed on fractional fuzzy initial value problem (FFIVP) with triangular condition. Here, Legendre polynomials are used to modify the structure of neural networks with a Taylor series approximation of the tangent hyperbolic as activation function while the network adaptive coefficients are trained in the procedure of simulated annealing to optimize the residual error. The computational results are depicted in terms of numerical values to compare them with previous results.

Publisher

Walter de Gruyter GmbH

Subject

General Medicine

Reference35 articles.

1. [1] Z. Li, D. Chen, J. Zhu, and Y. Liu, Nonlinear dynamics of fractional order Duffing system, Chaos, Solitons & Fractals, 81 (2015) 111–116.

2. [2] S. Pourdehi, A. Azami, and F. Shabaninia, Fuzzy Kalman-type filter for interval fractional-order systems with finite-step auto-correlated process noises, Neurocomputing, 159 (2015) 44–49.

3. [3] A. Boulkroune, A. Bouzeriba, and T. Bouden, Fuzzy generalized projective synchronization of incommensurate fractional-order chaotic systems, Neurocomputing, 173(3) (2016) 606-614.

4. [4] Y. Ji, L. Su, and J. Qiu, Design of fuzzy output feedback stabilization for uncertain fractional-order systems, Neurocomputing, 173(3) (2016) 1683-1693.

5. [5] Y. Zheng, Fuzzy prediction-based feedback control of fractional order chaotic systems, Opt. - Int. J. Light Electron Opt., 126(24) (2015) 5645-5649.

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3