Affiliation:
1. School of Mathematics and Statistics, University College Dublin , Ireland
Abstract
Abstract
In this articlewe provide some lists of real numberswhich can be realized as the spectra of nonnegative diagonalizable matrices but which are not the spectra of nonnegative symmetric matrices. In particular, we examine the classical list σ = (3 + t, 3 − t, −2, −2, −2) with t ≥ 0, and show that 0 is realizable by a nonnegative diagonalizable matrix only for t ≥ 1. We also provide examples of lists which are realizable as the spectra of nonnegative matrices, but not as the spectra of nonnegative diagonalizable matrices by examining the Jordan Normal Form
Subject
Geometry and Topology,Algebra and Number Theory
Cited by
8 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献