The Arithmetic Tutte polynomial of two matrices associated to Trees

Author:

Bapat R. B.1,Sivasubramanian Sivaramakrishnan2

Affiliation:

1. Stat-Math Unit, Indian Statistical Institute, Delhi, 7-SJSS Marg, New Delhi 110 016, India

2. Department of Mathematics, Indian Institute of Technology, Bombay, Mumbai 400 076, India

Abstract

Abstract Arithmetic matroids arising from a list A of integral vectors in Zn are of recent interest and the arithmetic Tutte polynomial MA(x, y) of A is a fundamental invariant with deep connections to several areas. In this work, we consider two lists of vectors coming from the rows of matrices associated to a tree T. Let T = (V, E) be a tree with |V| = n and let LT be the q-analogue of its Laplacian L in the variable q. Assign q = r for r ∈ ℤ with r/= 0, ±1 and treat the n rows of LT after this assignment as a list containing elements of ℤn. We give a formula for the arithmetic Tutte polynomial MLT (x, y) of this list and show that it depends only on n, r and is independent of the structure of T. An analogous result holds for another polynomial matrix associated to T: EDT, the n × n exponential distance matrix of T. More generally, we give formulae for the multivariate arithmetic Tutte polynomials associated to the list of row vectors of these two matriceswhich shows that even the multivariate arithmetic Tutte polynomial is independent of the tree T. As a corollary, we get the Ehrhart polynomials of the following zonotopes: - ZEDT obtained from the rows of EDT and - ZLT obtained from the rows of LT. Further, we explicitly find the maximum volume ellipsoid contained in the zonotopes ZEDT, ZLT and show that the volume of these ellipsoids are again tree independent for fixed n, q. A similar result holds for the minimum volume ellipsoid containing these zonotopes.

Publisher

Walter de Gruyter GmbH

Subject

Geometry and Topology,Algebra and Number Theory

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. The maximum four point condition matrix of a tree;Linear Algebra and its Applications;2024-06

2. The bipartite Laplacian matrix of a nonsingular tree;Special Matrices;2023-01-01

3. The 2-Steiner distance matrix of a tree;Linear Algebra and its Applications;2022-12

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3