Author:
Desmaret Sophie,Qian Lian,Vanloo Berlinda,Meerschaert Kris,Van Damme Jozef,Grooten Johan,Vandekerckhove Joël,Prestwich Glenn D.,Gettemans Jan
Abstract
AbstractLysophosphatidic acid is a pleiotropic lipid signalingmolecule that evokes a broad array of cellular responses including proliferation, tumor cell invasion, neurite retraction, cytoskeletal rearrangements and smooth muscle contraction. Generally, lysophosphatidic acid triggers physiological responses through interaction with specific plasma membrane receptors called LPA 1–4. There is, however, increasing evidence in support of intracellular proteins that interact with LPA. We employed Affigel-immobilized LPA to isolate cytoplasmic proteins that interact with this lysophospholipid. Among the proteins retained by this affinity matrix, pyruvate kinase, clathrin heavy chain and heat shock protein 70 (Hsp70) were identified by mass spectrometry. Isothermal titration calorimetry showed that pyruvate kinase contains onebinding site for LPA (Kaapprox. 106 M-1). Furthermore, LPA dissociates enzymatically active pyruvate-kinase tetramers into less active dimers, and is maximally active at concentrations close to its critical micelle concentration. These effects were not mimicked by other lysophospholipids. Co-immunoprecipitation experiments showed that pyruvate kinase interacts with clathrin, and confocal imaging revealed co-localization between clathrin and pyruvate kinase in the perinuclear region of cells. Our data suggest that pyruvate kinase partly exists in complex with clathrin in subcellular membranous areas, and that locally increased LPA levels can trigger inactivation of the metabolic enzyme.
Subject
Clinical Biochemistry,Molecular Biology,Biochemistry
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献