Low temperature synthesis of SnSr(OH)6 nanoflowers and photocatalytic performance for organic pollutants

Author:

Xue Zeyang1,Li Feiyang1,Yu Chunhu1,Huang Jianfeng1,Tao Feihu1,Cai Zhengyu1,Zhang Hui1,Pei Lizhai12ORCID

Affiliation:

1. School of Materials Science and Engineering , Anhui University of Technology , Ma’anshan , Anhui , P. R. China

2. Key Laboratory of Metallurgical Emission Reduction & Resources Recycling, Ministry of Education , Anhui University of Technology , Ma’anshan , Anhui , P. R. China

Abstract

Abstract A simple low temperature hydrothermal route has been used for the synthesis of strontium tin hydroxide (SrSn(OH)6) nanoflowers. The synthesized SrSn(OH)6 nanoflowers were investigated by means of powder X-ray diffraction, scanning electron microscopy, transmission electron microscopy, X-ray photoelectron spectroscopy and solid ultraviolet−visible diffuse reflectance spectroscopy. The SrSn(OH)6 nanoflowers are composed of nanorods with hexagonal structure, length and diameter of about 2 µm and 30–100 nm, respectively. The growth process of the SrSn(OH)6 nanoflowers is proposed as the Ostwald ripening and crystal splitting process based on the morphological evolution from different hydrothermal conditions. The band gap of the nanoflowers is 3.53 eV. The SrSn(OH)6 nanoflowers were utilized for the photocatalytic degradation of gentian violet under ultraviolet light irradiation. The roles of various factors including irradiation time and nanoflower dosage on the photocatalytic activity of the SrSn(OH)6 nanoflowers are discussed. The possible photocatalytic mechanism for gentian violet degradation using the SrSn(OH)6 nanoflowers was determined by radical trapping experiments. The SrSn(OH)6 nanoflowers possess good stability and are an efficient photocatalyst for the removal of organic pollutants.

Funder

Natural Science Foundation of Anhui Province

Publisher

Walter de Gruyter GmbH

Subject

Materials Chemistry,Metals and Alloys,Physical and Theoretical Chemistry,Condensed Matter Physics

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3