STEM investigations of the influence of copper on alumina scale detachment during in-situ wetting experiments of Al-7Si-0.3Mg alloy with 95Sn-5Cu filler metal

Author:

Vayyala Ashok1,Aretz Anke1,Bobzin Kirsten2,Wietheger Wolfgang M.2,Hebing Julian2,Iskandar Riza1,Mayer Joachim1,Schmidt Alexander2

Affiliation:

1. Central Facility for Electron Microscopy (GFE), RWTH Aachen University , Aachen , Germany

2. Surface Engineering Institute (IOT), RWTH Aachen University , Aachen , Germany

Abstract

Abstract Aluminum alloys have a strong tendency to form alumina layers on their surfaces when exposed to atmospheric air, even at room temperature. This is a severe challenge for brazing aluminum alloys as the alumina layer acts as a diffusion barrier and hinders the interactions between the filler metal and the base material. In order to achieve a good metallurgical bond between the filler metal and the aluminum alloy, it is of crucial importance to remove the alumina layer as well as to simultaneously prevent further oxidation of the aluminum alloy. The current investigation focuses on the detailed micro-structural changes that occur during in-situ brazing of liquid filler metal, 95Sn-5Cu (wt.%) on an aluminum alloy, Al-7Si-0.3Mg. These in-situ studies were performed in a large chamber scanning electron microscope in order to monitor the interactions of the filler metal and the base material, particularly the role of Cu on alumina detachment. After the in-situ experiments, the local surface and cross-sectional regions were analyzed by scanning electron microscopy in conjunction with energy dispersive X-ray spectroscopy to understand the variation in chemistry across the wetted region, which includes the interfacial region between filler metal and the base material. As the alumina scale present on the aluminum alloy is very thin (<50 nm), nanoscale characterization techniques such as transmission electron microscopy in scanning mode, including selected area electron diffraction for crystal structure determination, were performed. From this investigation, it was found that the Cu in liquid filler metal diffuses into the base material via the oxide layer, resulting in the formation of Al2Cu intermetallic precipitates.

Publisher

Walter de Gruyter GmbH

Subject

Materials Chemistry,Metals and Alloys,Physical and Theoretical Chemistry,Condensed Matter Physics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3