Effect of tool pin profile on the heat generation model of the friction stir welding of aluminium alloy

Author:

Kesharwani Rahul1ORCID,Jha Kishor Kumar1,Sarkar Chiranjit1,Imam Murshid1

Affiliation:

1. Department of Mechanical Engineering , Indian Institute of Technology Patna , Patna , Bihar , India

Abstract

Abstract The present work aims to model the three-dimensional heat transfer coupled with the material flow model of 7075-T6 aluminium alloy material using the three tool pin profiles, square, pentagon, and hexagon, in the friction stir welding process. The temperature rise and fluid flow behaviour from the top to the bottom of the tool were evaluated. Also, the strain rate and dynamic viscosity variation were found near the tool pin and shoulder region. The results showed that the frictional contact heat between the shoulder surface and workpiece was responsible for the maximum heat generation. The probe area was minimum in the square tool pin geometry, which results in high heat generation due to the maximum shoulder surface contact area with the workpiece model. Furthermore, the analytical formula for calculating the heat generation on the tool shoulder/workpiece interface and the tool pin/workpiece contact region were also evaluated. The numerical modelling of heat generation was evaluated by COMSOL Multiphysics V5.3a software.

Publisher

Walter de Gruyter GmbH

Subject

Materials Chemistry,Metals and Alloys,Physical and Theoretical Chemistry,Condensed Matter Physics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3